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Abstract 

The nonlinear  wave equat ion,  (otr - A(O + (O3 = 0, has many  solut ions that  are periodic in 
t ime and localized in space, all wi th  infinte energies. The search for spherically symmetr ic  
solutions tha t  are well represented by the  simple approximat ion ,  (o(r, t) =-A(r) sin cot, 
leads to a discrete spec t rum of  solutions {(oN(r, t; co)}. The solut ions are nonlinear  wave- 
packets,  and they can be regarded as particles. The asympto t ic  theory  (co ~ ~ )  of  the  
m o t i o n  o f  the guiding center  o f  the  N t h  wavepacket ,  in the presence of  a specified 
potential ,  is characterized by an infinite mechanical  mass  and an infinte interact ion mass,  
and they are compatible.  The rest mass  in the classical relativistic mechanics  of  guiding 
centers is m o c 2 = hNW; i.e. the  spect rum {(ON} determines a spect rum of Planck's constants.  

1. Introduction-properties o f  periodic solutions 

The nonlinear wave equation, 

~t t  - -  ~ + ~ b3 = 0 (1.1) 

is often referred to as the classical (~4)4-theory-classical because the 
Cauchy problem, ¢(x, O) and Cr(X, O) specified, is well posed in it (Strauss, 
1968), and (¢4)4 in accord with its variational formulations in terms of 

W[¢I - f {½(¢t 2 - t V~ [2) _ ¼~4} d3x dt (1.2) 

At first we shall deal with general properties of spherically symmetric, periodic 
solutions of the Euler equation (1.1), then, in Section 5 a variational formulation 
will be introduced to provide a further restriction of the class of solutions. 
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The spherical solutions of  (1.1) satisfy 

2 
¢,~ + - G - Cn = ¢3 

r 

and the conservation laws (cf. Noether 's  Th.), 

2 
P t  +Jr + - - J  = 0 

r 

where 

2 
/ t  + % + - - ¢ r  z = 0 

F 

- -  1 2 ¼~b4 P=~(¢ t  + ¢ 2 ) +  

- - 1  2 a = ~ ( ¢ t  + e f t )  -- ¼~4 

i =  -¢t¢~ 
In accord with (1.4) we shall define the total energy of a solution as 

(1.3) 

(1.4) 

(1.5) 

R 

E - lim ER, E R -~ 47r f pr z dr (1.6) 
R ~ °  0 

The reason for the limit in (1.6) will become evident presently; at this point 
let it be noted that  

d dR 
~ t E R ( t )  = 0 ~ p(R (t), t)-d~ = f (R(t), t) (1.7) 

In particular, for a periodic solution, where p (r, t) and ](r, t) have nonzero 
and zero mean values, respectively, R(t)  is periodic and the mean value of  the 
energy within a sphere of  radius R is constant. 

The spherically symmetric periodicity condition is 

~(r, t) = ¢(r) + ~(r, co(r)t + 6(r)) (1.S) 

where q~is the mean value and ~(r, 0) is a 2rr-periodic, zero-mean function of  
0. The substitution of  (1.8) in (1.3) implies significant restrictions: when the 
result is multiplied by ¢0 and integrated over a period, it follows that  

[t~'(~) + 8'¢)1 f go ~ dO = 0 
0 r 

(1.9) 

and, in turn, that the only periodic solutions that are regular at r = 0 are those 
for which oJ(r)  = 3'(r) = 0; i.e. the frequency and phase of the oscillation are 
constants, to which we shall assign the values one and zero, for convenience. 
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The second restriction follows from the equation, 

27r 

~rr + - - 0 r  = q;~+ r ~ ¢t2dt  ~ (1.10) 

0 

which has no solutions, save ~ = 0, that remain bounded for 0 <~ r < ~,  regard- 
less of the behavior of q~. Thus the condition that ~ shall be zero is necessary 
for the existence of  regular solutions. 

All told, the conditions on the solutions to be discussed here are: 

2 
I. Spherical; Orr + - Or - O t t  = 0 3, 

r 

II. Periodic; 0(r, t + 2zr) - 0(r, t) = ~(r, 0) = ~(r) = 0, 
III. Regular (r = 0); qSr(0, t) = 0, 
IV. Regular (r-+ oo); c~(r, t ) - ,  O as r-+ oo. 

To each solution of  (I-IV) there corresponds an eight-parameter family of 
solutions of (1.1), generated by the Poincar~ group (with seven parameters in 
place of  the usual ten because of  the spherical symmetry) and the dimensional 
group, 

¢(r, t)-+ ~(r, t )=  coO(cor, cot) (1.1 I) 

which generates solutions with an arbitrary frequency. A typical example is 

¢(r,  t) -+ ~(x,  t) = ~O(e,  ?), 

(z - ~t)~] ~'~ (1.12) f=co x2 +Y2 + 1 - f  ] 

?=co t - ~ z  

with two of the eight parameters- the remaining six are the displacements, 
t ~ t - to and x -+ x - x o, and the polar and azimuthal angles of the z-axis. 

Given a solution of (I-IV), the corresponding solution (1.12) is a wave- 
packet, with a spheroidal envelope that moves with the constant velocity t3 
(the carrier wave has the frequency co/X/(1 - / 3  2) and it propagates through 
the envelope with the phase velocity t//3)-in effect, a free particle of the 
classical (~b4)4-theory. 

2. Existence-further properties 

It has been shown elsewhere (Bisshopp, 197 la) that there are uncountably 
many solutions of I-IV. In brief the existence proof  goes as fbllows: 

Equation (1.3) is hyperbolic, and the Cauchy problem, 0r(0, t) = 0 and 
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¢(0, t) = f(t) ,  is well posed in a neighborhood of r = 0. We seek conditions on 
the initial da t a f ( t )  such that the solution of I - I I I  is bounded on the strip, 
0 ~< t <~ 2rr and 0 <~ r < 0% and satisfies IV. The method is by  construction of  
Lyapunov functionals, the first of  which is the average of  the second con- 
servation law over a period. Let <.) denote the average over a period, and let 

S [¢1 - < a > = ½< Cr~ ) + V[¢] 
1 2 V[¢] ~(¢t )_¼(¢4) (2.1) 

When ¢ is a solution of  (t  .3) the rate of  change of  S with r is 

dS 2 
. . . . .  <¢7) ~< 0 (2.2) 
dr r 

The functional V[¢] depends parametrically on r; its properties, such as the 
functions for which it is stationary, are independent of  r. 

v,[g3 

V,~ 

I .2 2 
~_ ~ <gt > 

/ ~ 1 A2<g2>t 

I A,[g] ~ A 

i,~[g] 

Figure I -V[Ag]  for fixed g(r, t). 

In terms of the representation, 

¢(r, t) =A(r)g(r, t), (g)  = 0, <g2) = 1 4 (2.3) 

V[Ag] varies with A as depicted in Fig. 1. 

The value marked V** in Fig. 1 is the minimum over all choices o f g  of V. [g] ; 
it is the height of  the lowest col (8 V = 0), and it is positive ( ~  fo rg  ~ x/2 sin t). 

To find bounded solutions we consider the initial data, 

q~r(0, t) = 0, ¢(0, t) = Ag(t), O < A < A * * [ g ] ~ A . [ g ]  (2.4) 

Then 

V** > V(O) = S(O) >1 S(r) >~ V(r) >~ 0 (2.5) 

i.e. the solution is trapped? in the basin of  ¢ = 0 where 

< ¢r 2 > ~ 2S(r) < 2V** (2.6) 

< ~t2> <~ 4V(r) ~< 4S(r) 

The domain of trapped solutions is considerably larger than that defined by (2.4). 
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A further, less obvious property of the trapped solutions is the existence of a 
positive number e (in the range (0, ½) and independent of r) such that 

e (~bt2) < (~2) -- (q54), 0~<r~<~ (2.7) 

The result follows from the observation that A 3 V[Ag]/OA >~ 0 when 
0 < t A I < A ,  [g] and A 0 V/3A ) ½A 2 (gt2) in a neighborhood ofA = 0. 

To see that the trapped solutions satisfy IV we introduce 

_ 3/3 
ff[q)l =S[~b] + [3 (OG)+ (q~2), 3 > 0  (2.8) 

r 

such that 

df f  d--r = - ~ - 2 - 13(qir2) f l  (( q~t2)_ (~4) )  313 r r "~ (gb2) 

From the Poincar6 and Schwartz inequalities (recall (q~) = 0) and (2.5), 

( OG )2 ~< (~2) (G~) ~< 8S (0 2 

S(r)=S(r)  1+ r r 2 ] 

IX(r) t ~< 2%/23, 0 K u(r) K 63 

Or 

Given e > 0 and (2.6), the choice 2 - t3 = e3 implies 

(2.9) 

(2.1o)  

- - - -  + X(r)  + r >  ( 2 . 1 1 )  
ff dr 1 +e I +e 

from which it follows that S, ( ¢t 2), ( G 2) and ~ approach zero as r -> ~. 
Once again from the Poincard and Schwartz inequalities and (2.5), 

(q54~bt2) ~< (~b2)2(q~t2) ~< 64S(r)3 (2.12) 

( ~b4~br ~) < 32S(r) 3 

Thus the Fourier series, 

= Z an(r) sin nt 

~3 = ~, bn(r ) sin nt 

converge in the mean to C 1 thnctions of r  and t. 
The equations for the Fourier coefficients, 

2 
a n t  r + - - t l n r  -1-lq2an = b n 

r 

(2.13) 

(2.14) 

b n = 2 ( sin nt  (~ ak sin kt )  3) 
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have the formal solutions (ant(O) = 0), 

r 

an r : + S  n o cosno  )sinnr nr 
o 

where 

r (j   o cosnr 
- obn(O) sin no ] nr 

oo  

- Kn sin (nr - 6n) --nrl f abn sin n(a - r) do 

r 

an ~an(0) 

(2.15) 

cx~ 

gn COS ~n = OLn + f rbn cos l'lr dr 
0 

Kn sin fin = f rbn sin nr dr 
o 

(2.16) 

The asymptotic expansion of ~ for r -+ 0% 

sin (nr - fin) 
~(r, t) = ~  Kn nr 

oo 

sin nt + ~ O ( r  -n) (2.17) 

2 

can be generated directly from (2.15). It follows that S, (Or 2) and (G  2) are of 
O(r-2). 

3. Approximate solutions 

Given the convergence of the Fourier series (2.13), it is suggested that 
qualitative features of increasingly more complicated solutions can be des- 
cribed by the Fourier-polynomialst, 

(b (~) = ~ a(U)(r) sin nt 
I 

1 

(3.1) 

"~ Cf. Galexkin's method, the Rayleigh-Ritz method, the variational method. 
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The equations that govern the vth approximation are 

11 

( S  ) a(V)(r) = a (~) + eb(n v) cos no do sin nr 
n r  

o 
r 

( , 
b(n~)(r) 2 n n t  s ink  

Note that (~3)(v) 4= (~(v/)3; the terms where n > v are discarded for both ~b 
and ~b 3. 

The simplest of  the Fourier-polynomials is the one-term approximation, 

~. A(r) sin t, ~3 ~ ~A 3 sin t (3.3) 

governed by 

2 
Arr + - - A t  + (1 - ~AZ)A = O, At(O) = 0 (3.4) 

r 

To understand the behavior of  A(r), it is instructive to introduce the analog 
o fS [~ ] ,  

2S[~] - ' -S 1 [A] = ½(At 2 + A 2) - I~A 4 

2 2 dS1 _ At(Art  + (1 - ¼A2)A) = - - - A t  
dr r 

(3.5) 

The analog of the basin of  ~b = 0 where periodic solutions are trapped is the 
interval IA(0) I < 2/,,/3 for which 0 < S 1 [A(0)] < ½. The qualitative behavior 
of A(r)  can be seen in terms of the traces (.4 (r), A r(r)) in the phase-plane: for 
IA(O) t < 2 / x / 3  the trace spirals inward and, as r -+ % 

A(r) - K s i n ( r - 6 )  9 K3cOs(r -  (-~) 
+ - - - - -  ~) + 0 (3.6) 

r 32 r 2 

where ~ (A(0))(= --K(--A(O))) and 6(IA(O) t) are monotonic functions, not 
easily evaluated. For [A(0) [ > 2/X/'3, IA(r) [ increases and diverges at a finite 
value of r. 

The specification of features of  A(r;  K) is a numerical problem, in general; 
here we shall discuss the two limits, A(0) -~ 0 (~: ~ 0) and A(0) -* 2 / @  
(K-, oo). 
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In the limit where A(0) -* 0 we have A 2 < 1 for all r (from the properties 
orS  1 [A]) and (3.2) can be iterated to obtain 

r cosr sin4o, A(r)=A(O) - ~A(0) 2 --7--i--~-do} (1 + 0(A2)) 

0 

(3.7) 

It follows directly that the limit A(0) -+ 0 is the limit K -~ 0 and that 

o ~  

~" sin 4 r 4 
J -7-dr +0( ) 
0 

3rr g2 + 0(K4), K "+ 0 (3.8) 
16 

In the limit where A(0) 2~ 2/V~3 (from below) the behavior of A(r) is a 
nonuniform approach to the plane wave (i.e. the non-localized solution where 
A -= 2/~/3, Ar -- 0) for finite values of r, and to the asymptotic decay (3.6) 
as r-+ ~o. In effect, the domain of validity of (3.6), r > R ,  (say), is pushed 
outward, and K and 8 become larger and larger. The asymptotic form of A(r) 
consists of a body which can be defined as 0 ~< r ~< R where R is the radius of 
the first zero of A, a transition (R < r < R,) where the oscillation is of rela- 
tively large magnitude and the separation of zeros of A is of 0(ln R), and a 
tail where (3.6) is an adequate approximation. R,  R , ,  K and 6 all diverge as 
A(0) -+ 2/X/3; to see how, we consider the limit R -+ oo. 

In the limit where R --* ~ the limiting form of the solution in the body is 

2 [ I [ r sinh ~/2R 
A(r)= ~-~tanh [~lnl~ s~nh--~}+O(1) ] (3.9) 

on the interval 0 ~ r ~< R. The correction is zero at r = R and is 0 (1/17) on 
the closed interval. Thus as R ~ o% A(0) ~ 2/x/3 in accord with the asymptotic 
relation, 

A(0) "" @33 (1 - 4~/2 R e -~/2R) (3.10) 

The qualitative behavior of the solution in the transition from body to 
tail can be inferred from the approximation, analogous to (3.9), 

forR ~< r~< 2/~ - R ,  where/~is the zero of Ar after R and 2/? - R  is 
(approximately) the second zero of A. To obtain estimates of A(/~) and/~ 
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we note that 2/X/3 -A(O) and ½ - $ 1 ( 0  ) are exponentially small and that 
S 1 (/~) can be evaluated approximately as 

S1 (/~) = S1 (0) - ~R- sech 4 dr+O (3.12) 
- - c o  

1 32X/2 ( 1 1  
- + 0  

3 9R 

Since Ar(l~) = 0, (3.12) implies 

2 ( {8V/2tl/21 
A(R) ~ - ~-~ 1 - \-3R--] ] (3.13) 

and from (3.11) it follows that 

/ ~ - R  ~ 2  n (3.14) 

Thus, as A(0) -+ 2 / @  and R ~ % the amplitude of the oscillation in the 
transition is large 

1~4 I~ ~ ( t  - 0(R-la)) 

and the separation of zeros of A is 0(ln R), as mentioned earlier. 
Once again from the properties of S 1 [A] it follows that the scale-length 

defined by the rate of change of $1 (r)(S~ (r)/S1 = 0(1/r)) increases with r 
while the separation of zeros of A decreases with r. Thus the estimate, period/ 
scale-length = 0(R -1 in R), is an overestimation for r > R ; and a relatively 
gross approximation of the solution in the tail (error of 0(R -1 In R)) can be 
found by lu_mping the transition and tail together in a single phase-amplitude 
approximation. For R ~< r <oo we seek a solution of the form A(r) = 
A(P(r), r) where A(O, r) is a 2u u-periodic function of 0. Then, in the lowest 
approximation where O/3r is neglected in comparison with Pr O/aO, we obtain 

A(r) = f(P(r); E(r))(1 + 0(R - 1  in R)) (3.15) 

where the osculating approximation f(O ;E) satisfies the local energy equation, 

½er2fO 2 + ½f2 _ 1~6f4 = E(r )  (3.16) 
The functions P(r) and E(r) are determined by the conditions, Q) that f 

shall be a 2rr-periodic function of 0 and (2) that the correction to A of 
0(R-I  In R) shall be a 2rr-periodic function of 0 (i.e. that there is no unbounded 
secular term)(Luke, 1966). The results can be most easily stated in terms of 
the action, 

J(er, E) =-t'r 2 ~ fo df  = PA(E) 
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j(E) -~ f V/(2(E - l f Z  + ~ f 4 ) ) I d f l  (3.17) 

(1) ~JE  =Prj'(E) = 27r (3.18) 

(2) ~+ (r2JPr)r = (r2j(E))r : 0 (3.19) 

the first is the nonlinear dispersion relation and the second is the transport 
equation - r2 j (E)  is the adiabatic invariant. 

In principle, we have K (R) and 6(R) approximated to 0(R -1 in R)  now. 
As r -+ oo; E --> 0 if(E) = 2rrE(1 + ~ E  + 0 (E2)) and A ~ N/2E sin P: the 
appropriate choice of the integration constant for (3.19) is 

rrK z K sin P 
/ (E)  : - -  A ~ - -  (3.20) 

r 2 ' r 

At r = R ; E ( R ) ~  S t ( R ) ~  ½ andi(½) = 16X,/2/9: thus 

= {16~2~1/2N Q (1~)) 
K \ - - ~  ] 1 + 0  (3.21) 

The evaluation of  ~(R) is more complicated: what is called for is 
r 

P(r) : rc + ] - ~  : r - 6(R) + 0 (3.22) 

R 

The exact evaluation of the leading term of 6(R) appears to be rather difficult-  
various approximations lead finally to the numerical estimate, 

with an error estimated at 1 or 2%. 

2 
~A 

R -- i 

= O(Zn R) i = 0(i) 

Figure 2. R(~)-+ ~ and ~ -~ ~. 
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In short, the functions A(r; K) vary smoothly from the linearized solution 
A ~ (K/r) sin r for K ~ 0 to the solution depicted schematically in Fig. 2 for 
K ~ ~o. The phase shift 8(K) of the asymptotic approximation, A ~ (K/r)sin ( r -  8) 
as r-+ oo, increases from 3nK2/16 for K "~ 0 to 8 ~ ½~K as K -+oo. 

4. Heuristic" theory of the discrete spectrum 

The one-term approximation 

C(r, t) ~A(r; ~) sin t = --  sin(r - 8(K)) sin t + 0 (4.1) 
r 

discussed in Section 3, is attractive in a number of ways: The approximate 
solutions of  the form (4.1) describe the least complicated wavepackets that  
can be identified with free particles in the (C4)4-theory; and they provide a 
link between the wave-equation and the Klein-Gordon equation: both  can be 
considered as governing asymptotic approximations (K ~ 0 and K ~ 0% 
respectively) within the larger theory. 

In this section we shall introduce the question of when (i.e. which values 
of  K) there is a periodic solution C(r, t) that is 'close' to an approximation of 
the form (4.1). Evidently, something like a norm will b e needed; we shall 
discuss the matter  in terms of the total energy. 

As noted in Section 1, the mean value of  the energy within a sphere of 
radius R is constant when the solution is periodic. Accordingly, we shall define 

/T R =-4n I r2(½(Ct2 + G2) + ¼C4)d (4.2) 
\ o  

where 

2rr, 

I I . d t  (4.3) 
<'>--~ o 

When C(r, t) is a solution, E R can be transformed by integrations by parts 
and the use of  (1.3) and/or (1.4); e.g. 

R 

ER:47r(½r:CGIRO + f r2(O•- ¼Ca)dr) 
o 

= 4 n  r3a~o +~ ~ r2 (G  2 +¼C4)d 
o 

(4.4) 

The most convenient form is the integrated form, i.e. the linear combination 
of  the three that contains no integral over r, 

fir = 4nR <½((rC)t 2 + (rC)r 2 - C 2) - ¼r2C 4> Ir=R (4.5) 
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From (4.5) the limit of fiR asR -~ ~ can be evaluated in terms of {nn}. Let 
r~ = X: then 

Xtt -- Xrr + X3/r2 = 0 (4.6) 

and, after one more integration by parts, 

G = 4nR (X2 + Xr2) - -4 ~ - 2 3 t" "2 r 2 
r ~ "  R r = R  

/ f l  

= rrR E~n 2 + 0 IR ) (4.7) 

The divergence of fiR with R, while in one sense less serious than that 
encountered in the quantized (O4)4-theory (0(R) vs. 0(R3)), is in another 
sense more serious: renormalization by the disregarding of  infinite contributions 
is not an option he re - the  renormalized energy_of every periodic solution is 
zero. For present purposes we shall simply let E R diverge, keeping track of 
how. 

The coefficient A(r) of the one-term approximation is governed by 

2 
Art  + - - A t  + (1 - ~AZ)A = O, At(O) = 0 (4.8) 

g 

and the evaluation of fiR for q~ = A(r) sin t can be carried out in parallel with 
(4.4)-(4.7). The result, 

ER = rre K 2 + 0 (R)  (q5 = A (r; ~) sin t) (4.9) 

suggests the first condition we shall propose as necessary if ~b(r, t; an) is to be 
well-represented by A(r; ~) sin t; viz. 

•2 = ZtCn 2. (4.10) 

To arrive at a relatively simple description of  a spectrum of values of g we 
shall consider the one-term approximation (4.1) as the first step of an iterative 
procedure that is to be used, in principle, to generate solutions of  (1.3). At 
the third step and thereafter in such procedures there are relatively arbitrary 
decisions to be made with regard to the ordering of succeeding corrections; 
but the second step is the same in all cases, viz. 

~(r, t) -~ A(r; K) sin t +A(r;  ~, ~) sin 3t (4.11) 

where A is a solution of  (4.8) and ,4 is a solution of 

2 - 
Art  + -- A r + 9A = -- ¼A 3, At(0) = 0 (4.12) 

r 
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The solution of (4.12), given A (r), can be written, 

A(r) = g sin (3r - g) 1 f + - -  oA 3 (o) sin 3 (r - o) de (4.13) 
3r 12r 

/. 

where 

gcos $ = A ( 0 ) -  ¼ f e A  3 cos 3ado 
o 

sin ~ = -¼ ; oA 3 sin 3odo 
o 

(4.14) 

At this level of approximation the condition (4.10), that the energy of the 
one-term approximation shall be that of the solution generated from it, implies 
g= 0;i.e. 

A(O) = ¼ f oil 3 cos 3 a d a  (4.15) 
o 

o o  

f all sin 3o do = 0 
o 

The first of the conditions determines the integration constant as a function 
of K; the second determines a discrete spectrum {•N} of values of K for which 
there exists a second approximation whose total energy does not differ from 
that of the first by an infinite amount of 0(R). 

The evaluation of {KN} is evidently a fairly involved numerical problem: 
here we shall present an estimate based on an approximation of A(r) for large 
values of t~. In accord with the asymptotic form ofA(r; t~) (compare Section 3) 
we propose the rough approximation, 

Ao ~ 2/V/3 O < r < R  

A(r;K)-~ (4.t6) 

K sin ( r -  6) R < r < o o  
r 

where R is the first zero of A and ~ is proportional toR. Then 

R c~ 

f a A 3 s i n 3 ° d ° - ~ A o 3 f o s i n 3 o d o + K 3 f  sin3(°-6)sin3°d°o2 

o o R 

K 3 

= 0(Ao3R) - 8-R- cos 36 + 0(~:3/R 2) (4.17) 
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and as R -+ ~, the term that has been evaluated is dominant. Thus the 
asymptotic estimate, for large ~, is (compare (3.23)) 

7r 
~N ~ 3 (N + ½), K N ~ 2(N + ½) (4.18) 

Just how accurate the estimates (4.18) are, especially for small N, will be 
left unspecified; at the very least, they can be regarded as a rough model of 
the actual spectrum. 

The heuristic theory of the spectrum, though relatively easy, is not 
altogether satisfactory. In the first place, no compelling argument has been 
advanced in support of the hypothesis (4.10). Even if that is accepted on 
faith, however, further shortcomings appear when we consider the higher 
approximations. Let us suppose that the problem of specification of the order 
in which succeeding steps are to be carried out has been resolved; then the 
basic problem we are faced with can be stated as follows: At the uth step of 
the iteration we have k v Fourier coefficients, where k~ depends on the scheme 
and generaliy increases with v. Thus we have k v integration constants and only 
one relation between them. The discrete nondegenerate spectrum of second 
approximations is fortuitous-the approximations of higher order are 
degenerate in a way that depends on the scheme. 

In the section to follow we shall seek the further conditions that serve to 
resolve the degeneracy of the higher approximations. Then in Section 6 we 
shall develop a more comprehensive theory of the discrete spectrum. 

5. The variational problem 

The 'spectrum' of solutions of I-IV is nothing like discrete: the parameters 
that distinguish one solution from another (e.g. {an}) define uncountably many 
solutions (aleph-1 to the power aleph-0). In this section we shall develop a 
criterion that reduces their number to a one-parameter family of countable 
sets (aleph-1 times aleph-0), still uncountable but considerably more 
manageable. 

First, let it be noted that (1.1) is a necessary condition for the variational 
problem, 6W = 0, whenever W[q~] exists. Accordingly, it is suggested that we 
regard that as the basic problem, with (1.1) a part of it. Then, in principle, 
all that need be done is to evaluate W(an) = W[¢(r, t; an)] and investigate 
conditions for stationarity of W with regard to the choice of {an}. For periodic 
solutions, the integration over all time can be replaced by the average over a 
period, and then, after the usual integrations by parts and the use of (1.3) and 
(2.17), 

D R = 47 r \ / f  r2 (½(¢t 2 - q~r 2) - ¼~b 4) dr 
\ 0 

= rZ¢4d _ ~ n  • _ + ~r -~-n sin 2(nR 6n) 0 (5.1) 
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Equation (5.1) displays a familiar annoyance that is known to appear in 
singular, two-point boundary value problems: when the interval becomes 
infinite, quantities we would like to manipulate either diverge, as we have 
seen with the energy, or cease to exist ,as above. The difficulty is easily over- 
come, in this problem, by noting that W R can be modified by the addition 
to it o f  a surface integral. 

We assert that (1.2) was in fact the wrong guess, and that the appropriate 
variational principle for the spherically symmetric periodic solutions is 
8W = 0 with W[¢I redefined as the limit where R ~ ~ of  

D R -=41r \ J ' L  t:~k t --(br2) - ¼(b4)+½(r2(b(br)r}d 
k 0  

(5.2) 

The conditions for 6 M R = 0 are: (a) the Euler equation (1.3) on the interval 
(0, R)  and (b) 

2rr ( r 2 ((br 8(b - (b6 (br))]Ro = 0 (5.3) 

Given a solution (b(r, t; an) , in accord with (a), the second condition for 
6 D = 0 can be written, 

lim <r2~ ((b~(b~n - #~,,~)6o~n } = 0 (5.4) 

Moreover, the limit of  WR [(b(r, t; an)] exists and has the value, 

V(an) - lim DR [(b(r, t; an) ] 
R-+oo  

= 7r (b4 

" .0  

The partial derivatives of V(%) exist and can be evaluated as follows: 
(ben satisfies the variational equation, 

9 
err  - -  (brr - - -  (br + 3¢2¢ ' = 0 (5.6) 

r 

and from (5.6) and (1.3) it follows that 

= 2rr lim 

=Tr 

(r2((b(bC~nr -- (brdOc~n) } 

iaa.,t (5.7) 
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By similar calculations, 

and 
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m (Km'~i 8mej  - ~m,~j 8mee i) = 0 (5.8) 

Vai~j = 7r - -  (Krna i (~rnaj + gmoej ~moe i +Km 8moqoej) (5.9) 
m 

Equations (5.7) and (5.9) serve to relate properties of V(an) and 'boundary 
conditions at ~ ' ;  the condition (5.3) becomes 

~V-~ Y G 8an=O (5.10) 

What remains to be done is to decide what class of variations is to be 
allowed in the application of condition (5.10). The simplest variational 
problem, that V shall be minimized by the choice of {an} , is too restrictive: 
~ ( a n )  is greater than or equal to zero, and the unconstrained minimum, 
V = O, is clearly attained for a n = 0, i.e. for the trivial solution, ~b = 0. There 
might be other stationary points of F(an) , t  but, if such points exist, the 
corresponding sdutions are not generated by the one-term approximation 
(4.1). In the one-term approximation if(an) ~ V(a), a -=A(0), and (from the 
results of Section 3) the only zero of V~ is at a = 0. 

To arrive at a variational problem that includes nontrivial solutions, we 
propose that P shall be minimized subject to a constraint, H(an)  = constant, 
Now let it be noted that there is a 'constant of the motion' associated with 
the problem, 8 WR = 0, viz the total energy, 

ET R = i F  R + V  R (5.11) 

-=2rr j'r2(q~t 2 + G 2 ) d  , 
\ 0  

q PR - ~ r2 ¢4 cl 

The finite problems, that D R shall be minimized subject to the constraint, 
f i r  = constant, (essentially the principle of least action), have a well defined 
limit with the necessary conditions, (1.3) on the interval 0 < r < oo and 

6 (vV-~ -] = 0, / t  -= lim 1 TR = ~r ]~Kn 2 (5.12) 
\n /  R - + ~ R  

The corresponding conditions, 

Eg.m 6man -- 2XlKrna n = O, X = (5.13) 

This would not be an option if V(ccn) were convex; a proof of that, if true, would 
strengthen the arguments of this section. 
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are the heretofore unspecified 'boundary conditions at ~ '  (complemented by 
ant(O) = 0) that provide the means for dealing with the degeneracy of 
¢(r, t; %). The global structure of the resulting problem can be conjectured 
to be the following: 

We shall assume that V (an) varies on the surface, Ft(an) = constant, in such 
manner that (5.13) has a discrete spectrum of solutions, {u(nN)(/7)}.t In general, 
the functions a(N)(H) cannot be expected to be continuous, much tess 
differentiable: to 'compute'  them, even approximately, requires a change of 
the point of view. The problem can be approached by considering Ckcurves 
(an(S)} on which dI4/ds = E&n_~r% 4 = O. Then, if {a(~'~3(ff)} is discontinuous, 
the problem, find stationary points of V on/7 that are near a specific curve 
{an(S)}, determines a discrete spectrum (SN [an(S)]} and {H(an(SN))}. To find 
all the stationary points in a relatively systematic manner one can consider: 
first the al-axis, then the rays in the oh, a2-plane, and so on. 

The foregoing conjectured geometrical interpretation of the appearance 
of discrete spectra in the classical (¢4)4-theory is partially supported by the 
result of the section to follow. On the ayaxis and with near interpreted as 
sufficiently near to be found by successive approximations, (5.13) determines 
the spectrum {KN} of Section 4-wi thout  (4. t 0) and nondegenerate. 

6. Bifurcation-formal theory of  the discrete spectrum 

The problem at hand can be characterized as one of singular bifurcation 
theory: singular because of the infinite interval and related unmanageable 
degeneracy of the solutions ¢(r, t; an)-solutions we shall view as branching 
from the one-term approximation at a spectrum of b(furcation points 
({KN} or {~N}) (Keller & Antman, 1969). In some problems of regular 
degenerate bifurcation theory it has been possible to solve the bifurcation 
problem (with fixed finite degeneracy), then resolve the degeneracy by an 
appeal to stability (Dean & Chambre, 1970). That, however, is not possible 
here; and we proposed to reverse the order, dealing with stability first, 
bifurcation after. 

The stability problem associated with solutions of (I-IV) is in fact a rather 
involved one: it is necessary to consider perturbed solutions of (1.1) within 
a relatively broad class of nonperiodic functions. For present purposes we 
shall avoid the stability problem by presenting, as a conjecture, that (5.13) 
is a stability condition.$ What will be done here is to develop a formal 
scheme of successive approximations for (1.3)and (5.13), based on the 
intuitive notion that we are dealing with solutions for which ¢ ~ A sin t. 
The condition (5.13) provides an eigenvalue problem that determines successive 
approximations of X(= V/H) and {an}: the bifurcation condition will be 
estimated from the first approximate solution of the eigenvalue problem. 

Here again a proof would be welcome, and would strengthen the argument about 
global structure; local structure (where ¢ ~ A sin t) will be dealt with, shortly. 

$ Stability will be discussed in a sequel. 
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Let us begin by isolating the first Fourier coefficients of functions ¢(r, t) 
that satisfy condition II, in terms of projection operators. Let 

2,rr 

pq5 = -- ¢ (r, t) sin t dt  
77 

O 

Pq5 -= sin t p ¢  

/Y¢_--¢ pc  (6.1) 

and in particular, for a solution, 

¢ = PO + P¢ = a(r) sin t + ~, p C = 0  (6.2) 

The basic conjecture, at the first level of description, is that solutions of 
(1.3) in a neighborhood of a solution of (5.13) can be generated by the itera- 
tion, 

a(r; an): a(0; an) = a 1 (6.3) 

2 a~  +-/a~ + (1 - ~a2)a __p(¢3 _ (e¢)3)  

¢(r, t; an): ¢(0, t; an) = ~ an sin nt (6.4) 
n 4 = l  

2 -  
err + --qSr - ) , r  = -¼ a3 sin 3t +/7(¢3 _ (p~)3) 

P 

Indices have been suppressed in favor of the convention that the declared 
quantity, a or ¢, is the only unknown in the problem that follows it. In 
principle, the cyclic iteration ((6.3), (6.4), (6.2)), with the initial condition 

= 0, is to be performed for sufficiently many cycles and for sufficiently 
many values of {a n } to obtain an approximate solution, with specified 
accuracy, of (5.13). 

As posed at this level, the iteration is 

= 0, ((6.3), (6.4), (6.2))'; (5.13) (615) 

where the exponent ~ indicates the number of times the cycle is iterated. 
Since (5.13) is outside the cycle, X(an) is to be determined for arbitrary {a n} 
(in a neighborhood of  a solution of (5.13)). Needless to say, an iteration that 
contains (5.13) in the cycle is a great deal more efficient. 

There are many ways to modify (6.5) so that (1.3) and (5.13) are dealt 
with simultaneously: they can be written symbolically as 

= 0, (6.3), (6.4), (6.2), (5.13), (X1) . . . . .  (Xv) (6.6) 

where the steps (Xk) evaluate corrections (often by Newton's method) for 
both (1.3) and (5.t3).  A specific example of  an iteration of the form (6.6) 
can be exhibited by evaluating, at e = 1, the perturbation theory that 
follows when (~3 _ (pq~)a -~ e(~a _ (pq~)a) in (6.3, 6.4), q5 -~ Z enqSn and 
{ak} -+ {~e"~kn}. 
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Generally speaking, the step (Xk) can be characterized as follows: given 
{an) from (Xk-- 1) one corrects ¢ (and possibly ¢~n and ¢~i~,) in accord with 
(1.3) and re-evaluates X(an), Xc~ n and X~i~:. Since 4~ has been ~nodified, X~n 
. ; t  , 

is not zero at {an), except by accident; tlie simptest cremate of the corrected 
values {an) is (Newton's method) 

~X~iaiSa / + X~i = 0 (6.7) 

o~ n ~-a  n + 6 a  n 

Equation (6.7) exhibits, in a fairly general way/, the importance of a solva- 
bility condition. The infinite determinant I Xaiai I is not well-defined; the 
equivalent condition, 

is necessary and sufficient for unique determination of (6an}. 
The leading approximation of (6.6) (or (6.5)) is 

(Xo) = (¢ = 0, (6.3), (6.4), (6.2), (5.13)) (6.9) 

and, except for (5.13), the general solution is 

0 (r, t;aa, a3, {an}' ) = A l(r ) sin t + A 3(r) sin 3t + E' an (r) sin n t (6.10) 

where {an}' and !2' exclude n = 1 and 3 and 

A 1 (r) = A (r; t¢ (a t ) )  

0 
Y ( +-14 f e A 3 s i n 3 °  ] 3-r 

0 

sin nr 
an(r ) = % - -  

HY 

There is a notable difference between the notions of successive approxima- 
tion here and in Section 4: there, a number of new harmonics are introduced 
at each stage (compare (4.11)); whereas here, the harmonics are all present 
(including those where n is even) and it is new interactions that are successively 
introduced. The condition (5.13) determines the vatues of all the integration 
constants (an} at each stage, with the satisfying result that those in {an}' are 
zero. 

The quantities that appear in the leading approximation of (5.13) are: 

1 = a(a l )  and 61 = 5(K(al)) 
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as discussed in Section 3 ; 

K 3(%, a3) = g(.4(0), K) and 8 a (a t ,  aa)  = 8(A-(0), g) 

as defined by (4.14) with a3 = A(0);  and, for n 4= 1 or 3, 

gn = an and 5 n = 0 

It follows directly from (5.13) (n =/= 1 or 3) that X = 0 ( n o t  allowed) or 
{an} '  = (0}', thus indicating the equivalence (in p rac t i ce -no t  in principle) 
of  the successive approximations here are in Section 4. The result, % = 0 
for a 'non-interacting' harmonic, is obtained at all stages of (6.6). 

The two remaining conditions are 

g l ( g  1~ l a  I --  2~t~ 1% ) + K3(½K3~3e q -°-2XK3a,)  = 0 (6.12) 

In the leading approximation the bifurcation condition has the two roots, 
X(%, a3): K 16 is, = 2XK is or  K 36 as = 6XK as "only the first is related to the 
problem at hand where ~ ~ A sin t. ~hus  

- 1 , ( 6 . 1 3 )  
H 

(KS'(K) varies smoothly from 3rrK2/8 (K -+ 0) to rr~/2, approximately (K -+ oo).) 
It follows from (6.12) and (6.13) that ~: is in the spectrum {KN}: 

I~ 3 = 0 +-> h: = KN ~ " J (g  + g ) ,  ~ = a N ~ + ½) (6.14) 

(compare Section 4). 

The determinant f 2xi i I is relatively easy to evaluate in the leading approxi- 
mation. Equations (6.12), complemented by - 2 X a  n = 0 for n 4= 1 or 3, are 
the equations (1/rr)(Vs - X/7 s ) = 0; the a~-derivative of  the left-hand side 
of  the ith condition is _n 2XA//. ~ince X~ ='t3, X acts like a constant in the 
calculation of Ail; and the only entries treat are not ones  on the principal 
diagonal are those from (6.12). The further relations, g3 = K 1% = ~ ls3 = 0, 
K~8 t% = 2XK 1% and K3% = 1 (compare (4.14) which also implies sin 8a = 0), 
can be used to obtain 

h: 1 ~ l cq t  
IAi/I=K1 ~1sl- 2X ]< 

......... (K ~,(K~ '(~))' /~ '(K))I~: < = ~(<) (6.15) 

From the results of  Section 3, the leading estimate of  1Ai] [ cannot vanish-  
when (6.6) converges the solution is nondegenerate, and the conjectures at 
the end of Section 5 are verified near the araxis .  
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7. The irresistible fotve-asymptotics 

The discrete spectrum of spherically symmetric, periodic solutions is based 
on three majo~ conjectures: 

(1) That it makes sense to delimit the class of regular, periodic solutions 
of (1.3) by the conditions of the associated variational problem. Some such 
conditions are necessary if we are to find a nondegenerate spectrum; the choice, 
a variational formulation, is known to be related to stability; but the stability 
theory has not been presented here. 

(2) That there is a convergent iteration (6.6). There appears to be enough 
information here to suggest the a priori estimates necessary for a constructive 
existence proof; but of course one has not been provided. 

(3) That the simplest solutions (near the araxis ) are somehow preferred. 
This is almost as arbitrary as quantizing the theory, but it can be checked. 
The simple solutions either are attractor in some wider class of  problems or 
they are not. 

In this section we shall accept the major conjectures and add quite a few 
others. 

The basic problem here is to isolate that feature of  a (q54)4-wavepacket that 
plays the role of mass of a (¢4)4-particle. To be certain we have made the 
correct identification, it wilt be necessary to relax conditions I-IV and discuss 
accelerated wavepackets: a very sketchy theory of interactions will be 
presented. 

We propose first to consider solutions of (1.1) that have the property, 

¢(x,  t) = ~ l (x ,  t) + ¢2(x, t) (7.1) 

pl'~pz in R2(t) 

p2"~pl i nR t ( t )  

where R l(t) and R2(t ) are disjoint regions of space. Solutions of the form (7.1) 
can be regarded as interacting wavepackets, sufficiently well separated to 
preclude strong interactions and the creation and destruction of particles. 

For such solutions we propose the provisional scheme of successive 
approximations, 

~I(X, t): q~ltt -- A(~I + ¢13 + (3 + ~/1)¢2~)12 + (~ -- 72)¢22¢1 = 0 

q~2(X, t): ¢2tt -- A¢2 + ~ 2  3 + ( ~  +') '2)~bI¢2 2 + (3 --"/'t)(])12~2 = 0 (7.2) 

with the initial condition ~bar t - Aq~2 + 023 = 0. The most that can be said, at 
this point, about the functions 7a(x, t) and 72(x, t) is that they cannot be 
arbitrary: an arbitrary choice of (3'1, 72) leads to an arbitrary interaction of 
two wavepackets; the Euler equation (1.1) determines a specific interaction. 
It appears that the 7's are to be determined by necessary conditions for the 
convergence of (7.2) to a solution of (1.1); and it can be conjectured that 
they are related to isospin and hypercharge of interacting scalar mesons. 
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We shall postpone the problem of determination of the 7's, and examine 
the generic problem in the iteration, viz. 

¢tt -- A¢  + ¢3 + W(x, t )¢  2 + V(x, t ) ¢  = 0 (7.3) 

where V(x, t) and W(x, t) are specified potentials. The corresponding 
Lagrangian density is 

~ 1  2 -- - ½ ¢ 3 W - ½ ¢ 2 V  (7.4) ~ [ ¢ t - - ½ 1  v¢]2 ¼¢4 

and the conservation laws are 

1¢3W p~ + (pu~),~ = ½4 2 v~ + ~ t (7.5) 
1 2 14314 ] Coui)t + ~ij, j = - ~ ¢  K i  - ~ ,i 

where 

= ½(¢2 + l y e  12) + ¼¢4 + ½¢3w+ ½¢2 v 
(7.6) 

PUi -= Ct~'(~" ~ i  = - - ¢ t ¢ , i  

There are quantum mechanical approximations of (7.3) (Bisshopp, 1971b); 
we shall bypasss them here, and isolate the classical particle mechanics. The 
basic hypothesis is that we are dealing with a solution that has a characteristic 
frequency that is large, i.e. that there is a local oscillation with a period that 
is negligibly small, compared with any other time-scale in the problem. 
Formally, we introduce a characteristic frequency co(t) and consider the limit 
co -> ~. The leading term of the asymptotic expansion of a solution of (7.3) is 
then 

¢(x, t) = co(t)~(~, ~-, x, t)(t + 0(co-l)) (7.7) 

where 

= co(t)(x - X(t))(1 + 0 (co - l ) )  

t 
r = f co(s) ds (1 + 0(w-l))  

(7.s) 

and 

~rr - A ~ +  ~3 = 0 (7.9) 

To complete the description of the leading approximation for a classical 
particlewe shall treat the special case (in accord with the major conjectures) 
where ¢ describes the Nth moving, spheroidal wavepacket (compare (1.12)); 
i.e. 

¢(x, 0 ~ co(t)¢N(r, r)  (7.10) 
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where 

~_ r - U . g  
~/1 - U 2 '  U( t )  = d X / d t  (7.11) 

/-2__ i~12 _ ( t ) .~)2 ÷ (t). ~ -  UO 2 
1 - v ~ ' b =  u / u  

The equations of  motion (for co(t) and X(t))  are now' to be found by sub- 
stitution o f (7.10) and (7.11) in the conservation laws (7.5); the calculation 
is easiest in the nonrelativistic case where U 2 ~ 1. In the double limit, co -~ oo 
and U-+ 0, we have 

O(x, t) ~ COON(r, 7") 

r ~  I~I =colx  - x ( t )  I 

t 

7.~ f co ds 

V(9 "~ co2 g ONr 
r 

(7. i2)  

d 3 x ~ - ~  d3~= ~3 r2 dr 
co co 

The next step is to compute p, pu i and 7rij , and then to evaluate the con- 
servation laws, averaged (Whitham, 1965) over the rapid variation of 0 with 
7. and then integrated over all space. Let (.) denote the average over the 
period 27r of  the r-variation; then 

<p> - -  ~4<½&v~ + o~v~) + ¼o9> 
+ co2(½0N2 ) V+ 0(CO4U z) + 0(c~2 cb) (7.13) 

<pui > = co4< O}r> Ui + 0(co2 cb) 

Now (Pr) = (P) t  and ((pt, li),i ) "~ CO4U i (02r) , i ;  neglecting terms of higher 
order, we obtain for the first of  equations (7.5), evaluated at U = 0, 

( P ) t  ~ <½0 2 > Vt (7. t4)  

The integral of  (7.14) over all space is 

~t  i m  colJ R +-~K R ~ lirn (7.15) 
- ~  R ~  co at 
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where 
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R 
Br n -4zr f r2(:(~rr' 2 + ~Vr ) )dr_R~N 

0 

R 
KI~ =- 47r ~ r2 ( ½+N 2 ) V d r ~  RGN V(X, t) 

0 

(E t nZ)N (7.16) = 7I'(Zgn2)N, GN --- 2 U 

The two sides of  (7. t5)  are compatible, and it follows directly that 63 = 0 - t h e  
rest frequency of  a (44)4 classical particle is constant. 

It follows easily that the surface integrals of  (Triini) are 0(1) as R ~ oo; the 
• 2 2 12  2 + 2 - " "  (R~rN/4rr); integrals of  r (¢~rr)and 7r (¢~r  fixer) dwerge at the same rate 
and R is dimensionless. The remaining conservation laws, averaged twice and 
evaluated at U = 0, are 

a (p dXi] ~ 31/ (7.17) 
dt  o at ] - " l  3X i 

where 

Po =ha) ,  h =/TN (7.18) 

Pl =g/a), g= aN 
The acceleration of  the guiding center is 0(a) -a) in the double limit co ~ 0% 
U-~ 0; i.e. the nonretativistic classical mechanics is governed by 

d2Xi g OV ] , g = ~N ~ ~ (7.19) 
dt2 ha)2 ~xi . X(t) ~ HN 

To find the relativistic mechanics, we note that (7.3) is invariant under the 
Lorentz transformation to the instantaneous rest-frame. The relativistic motion 
of  the guiding center is determined implicitly by (t, X) = (X~(s)) and (t, - X )  = 
(X~(s)): 

Jfc~Jf, x = 1 
OV (7.20) 

( / ~ ) "  =/21 ~X a 

where 

tl(S) = ~20 + tll V(Xa(s) )  (7.21) 

The final result follows from X~(/~a)"  = fi = Pl V and the requirements that 
(7.20) ~ (7.19) in the double limit, a) -+ ~ and U ~  0, and in the limit V ~  0. 
It may be noted that the effective rest mass is the sum of a constant bare 
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mass and a correction that depends on the interaction, even in the classical 
limit. 

Interactions according to (7.20) will be discussed, along with stability and 
stronger interactions, in a sequel; for the moment ,  let us simply observe that 
the interactions are weak in two senses: In the first place; given V, the inter- 
action is vanishingly small when w -+ ~o, as we have seen. Secondly; the 
potential that describes the interaction o f  one particle with another is 
0 ( Ir  - r' l -z )  in the non-relativistic case; i.e. the force-law is inverse cube, 
rather than inverse square. Moreover, (q~4)4 lacks charge and spin, but quite 
possibly has hypercharge and isospin; it seems safe to assert that it cannot 
possibly describe particles more complicated than the scalar mesons,  if  indeed 
it does that. 
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